VoltageSensor
function [x,y,typ]=VoltageSensor(job,arg1,arg2)
// Copyright INRIA
x=[];y=[];typ=[];
select job
case 'plot' then
standard_draw(arg1,%f,sensor_draw_ports)
case 'getinputs' then
[x,y,typ]=standard_inputs(arg1)
case 'getoutputs' then
[x,y,typ]=sensor_outputs(arg1)
case 'getorigin' then
[x,y]=standard_origin(arg1)
case 'set' then
x=arg1;
case 'define' then
model=scicos_model()
model.in=1;model.out=[1; 1];
model.sim='VoltageSensor'
model.blocktype='c'
model.dep_ut=[%t %f]
mo=modelica()
mo.model='VoltageSensor'
mo.inputs='p';
mo.outputs=['n';'v']
model.equations=mo
exprs=[]
gr_i=['xarc(orig(1)+sz(1)*1/8,orig(2)+sz(2)*4.3/5,sz(1)*3/4,sz(2)*3/4,0,360*64);';
'xsegs(orig(1)+sz(1)*[0 1/8],orig(2)+sz(2)*[1/2 1/2],0)';
'xsegs(orig(1)+sz(1)*[7/8 1],orig(2)+sz(2)*[1/2 1/2],0)';
'xsegs(orig(1)+sz(1)*[1.5/8 2.5/8],orig(2)+sz(2)*[1.3/2 1.2/2],0)';
'xsegs(orig(1)+sz(1)*[2.5/8 3.2/8],orig(2)+sz(2)*[1.62/2 1.3/2],0)';
'xsegs(orig(1)+sz(1)*[1/2 1/2],orig(2)+sz(2)*[4.25/5 1.3/2],0)';
'xsegs(orig(1)+sz(1)*[4.9/8 5.5/8],orig(2)+sz(2)*[1.3/2 1.65/2],0)';
'xsegs(orig(1)+sz(1)*[5.5/8 6.5/8],orig(2)+sz(2)*[1.2/2 1.32/2],0)';
'xsegs(orig(1)+sz(1)*[1/2 4.5/8],orig(2)+sz(2)*[1/2 1.32/2],0) ';
'xsegs(orig(1)+sz(1)*[1/2 1/2],orig(2)+sz(2)*[0.9/8 -1/8],0)';
'xfarc(orig(1)+sz(1)*0.93/2,orig(2)+sz(2)*1/2,sz(1)*0.2/4,sz(2)*0.2/4,0,360*64);';
' xx=orig(1)+sz(1)*4.2/8+[.9 1 0 .9]*sz(1)/12;';
'yy=orig(2)+sz(2)*1.27/2+[0.1 1 0.3 0.1]*sz(2)/7;';
'xfpoly(xx,yy);'
'xstring(orig(1)+sz(1)/2,orig(2)+sz(2)/5,''V'')']
x=standard_define([2 2],model,exprs,list(gr_i,0))
x.graphics.in_implicit=['I']
x.graphics.out_implicit=['I';'E']
end
endfunction
function sensor_draw_ports(o)
[orig,sz,orient]=(o.graphics.orig,o.graphics.sz,o.graphics.flip)
xset('pattern',default_color(0))
// draw input/output ports
//------------------------
if orient then //standard orientation
// set port shape
out2=[ 0 -1
1 -1
1 1
0 1]*diag([xf/7,yf/14])
in2= [-1 -1
0 -1
0 1
-1 1]*diag([xf/7,yf/14])
dy=sz(2)/2
xset('pattern',default_color(1))
xpoly(out2(:,1)+(orig(1)+sz(1)),..
out2(:,2)+(orig(2)+sz(2)-dy),"lines",1)
dy=sz(2)/2
xfpoly(in2(:,1)+orig(1),..
in2(:,2)+(orig(2)+sz(2)-dy),1)
else //tilded orientation
out2=[0 -1
-1 -1
-1 1
0 1]*diag([xf/7,yf/14])
in2= [1 -1
0 -1
0 1
1 1]*diag([xf/7,yf/14])
dy=sz(2)/2
xset('pattern',default_color(1))
xpoly(out2(:,1)+ones(4,1)*orig(1)-1,..
out2(:,2)+ones(4,1)*(orig(2)+sz(2)-dy),"lines",1)
dy=sz(2)/2
xfpoly(in2(:,1)+ones(4,1)*(orig(1)+sz(1))+1,..
in2(:,2)+ones(4,1)*(orig(2)+sz(2)-dy),1)
end
// valve command port port
//------------------------
// set port shape
out= [-1 1
0 0
1 1
-1 1]*diag([xf/14,yf/7])
dx=sz(1)/2
xpoly(out(:,1)+ones(4,1)*(orig(1)+dx),..
out(:,2)+ones(4,1)*(orig(2)-sz(2)*2/8),"lines",1)
endfunction
function [x,y,typ]=sensor_outputs(o)
// Copyright INRIA
xf=60
yf=40
[orig,sz,orient]=(o.graphics.orig,o.graphics.sz,o.graphics.flip)
//[orig,sz,orient]=o(2)(1:3);
inp=size(o.model.in,1);clkinp=size(o.model.evtin,1);
if orient then
x1=orig(1)+sz(1)
dx1=-xf/7
x2=orig(1)
dx2=xf/7
else
x1=orig(1)
dx1=yf/7
x2=orig(1)+sz(1)
dx2=-xf/7
end
y=[orig(2)+sz(2)-(sz(2)/2) ,orig(2)-sz(2)*2/8]
x=[(x1+dx2) orig(1)+sz(1)/2]
typ=[2 1]
endfunction