Inductor
function [x,y,typ]=Inductor(job,arg1,arg2)
// Copyright INRIA
x=[];y=[];typ=[];
select job
case 'plot' then
L=arg1.graphics.exprs;
standard_draw(arg1,%f)
case 'getinputs' then
[x,y,typ]=standard_inputs(arg1)
case 'getoutputs' then
[x,y,typ]=standard_outputs(arg1)
case 'getorigin' then
[x,y]=standard_origin(arg1)
case 'set' then
x=arg1;
graphics=arg1.graphics;exprs=graphics.exprs
model=arg1.model;
while %t do
[ok,L,exprs]=getvalue('Set Inductor block parameter',..
'L (H)',list('vec',1),exprs)
if ~ok then break,end
model.rpar=L
model.equations.parameters(2)=list(L)
graphics.exprs=exprs
x.graphics=graphics;x.model=model
break
end
case 'define' then
model=scicos_model()
model.in=[1];
model.out=[1];
L=1.d-5
model.rpar=L
model.sim='Inductor'
model.blocktype='c'
model.dep_ut=[%t %f]
mo=modelica();
mo.model='Inductor'
mo.inputs='p';
mo.outputs='n';
mo.parameters=list('L',list(L))
model.equations=mo;
exprs=string(L)
gr_i=['tt=linspace(0.04,0.96,100)'';'
'xpoly(tt*sz(1)+orig(1),+orig(2)+abs(sin(18*(tt-0.04)))*sz(2),""lines"");';
'xx=orig(1)+[0 0.04 0.04 0.04 0]*sz(1);';
'yy=orig(2)+[1/2 1/2 0 1/2 1/2]*sz(2);';
'xpoly(xx,yy) ';
'xx=orig(1)+[0.96 0.96 1 0.96 0.96 ]*sz(1);';
'yy=orig(2)+[abs(sin(18*0.92)) 1/2 1/2 1/2 abs(sin(18*0.92))]*sz(2);';
'xpoly(xx,yy) ';
'rect=xstringl(0,0,''L=''+L)'
'xstring(orig(1)+(sz(1)-rect(3))/2,orig(2)-rect(4)*1.2,''L=''+L)' ]
x=standard_define([2 0.9],model,exprs,list(gr_i,0))
x.graphics.in_implicit=['I']
x.graphics.out_implicit=['I']
end
endfunction