Fonction d'interfaçage
fr
Switch
function [x,y,typ]=Switch(job,arg1,arg2)
// Copyright INRIA
// exemple d'un bloc implicit,
// - sans entree ni sortie de conditionnement
// - avec une entree et une sortie de type implicit et de dimension 1
// - avec un dialogue de saisie de parametre
x=[];y=[];typ=[];
select job
case 'plot' then
R=arg1.graphics.exprs;
standard_draw(arg1,%f,VR_draw_ports)
case 'getinputs' then
[x,y,typ]=VR_inputs(arg1)
case 'getoutputs' then
[x,y,typ]=standard_outputs(arg1)
case 'getorigin' then
[x,y]=standard_origin(arg1)
case 'set' then
x=arg1;
graphics=arg1.graphics;exprs=graphics.exprs
model=arg1.model;
while %t do
[ok,Ron,Roff,exprs]=getvalue('Set non-ideal electrical switch parameters',..
['Resistance in On state (Ohm)';'Resistance in Off state (Ohm)'],list('vec',1,'vec',1),exprs)
if ~ok then break,end
model.equations.parameters(2)=list(Ron,Roff)
graphics.exprs=exprs
x.graphics=graphics;x.model=model
break
end
case 'define' then
model=scicos_model()
Ron=0.01;
Roff=1e5;
S=['Ron';'Roff'];
Z=eval(S);
model.sim='Switch'
model.blocktype='c'
model.dep_ut=[%t %f]
mo=modelica()
mo.model=model.sim
mo.inputs=['p';'inp'];
mo.outputs='n';
mo.parameters=list(S,Z);
model.equations=mo
model.in=ones(size(mo.inputs,'*'),1)
model.out=ones(size(mo.outputs,'*'),1)
model.rpar=Z;
exprs=string(Z);
gr_i=[' Thick=xget(''thickness'');xset(''thickness'',2);';
'x=orig(1)+[0,3,5.0]*sz(1)/8;';
'y=orig(2)+[1,1,2.5]*sz(2)/2;';
'xpoly(x,y,''lines'',0);';
'xpoly(orig(1)+3*sz(1)/8,orig(2)+1*sz(2)/2,''marks'',1);';
'x=orig(1)+[5,8]*sz(1)/8;';
'y=orig(2)+[1,1]*sz(2)/2;';
'xpoly(x,y,''lines'',0);';
'xstring(orig(1)+3,orig(2)+1.8,''sw'');';
'xset(''thickness'',Thick)'];
x=standard_define([2 0.18],model,exprs,list(gr_i,0))
x.graphics.in_implicit=['I';'E']
x.graphics.out_implicit=['I']
end
endfunction
// Switch
function VR_draw_ports(o)
[orig,sz,orient]=(o.graphics.orig,o.graphics.sz,o.graphics.flip)
xset('pattern',default_color(0))
dy=sz(2)/2
// draw input/output ports
//------------------------
xset('pattern',default_color(1))
if orient then //standard orientation
// set port shape
out2=[ 0 -1
1 -1
1 1
0 1]*diag([xf/7,yf/14])
in2= [-1 -1
0 -1
0 1
-1 1]*diag([xf/7,yf/14])
xpoly(out2(:,1)+(orig(1)+sz(1)),..
out2(:,2)+(orig(2)+sz(2)-dy),"lines",1)
xfpoly(in2(:,1)+orig(1),..
in2(:,2)+(orig(2)+sz(2)-dy),1)
else //tilded orientation
out2=[0 -1
-1 -1
-1 1
0 1]*diag([xf/7,yf/14])
in2= [1 -1
0 -1
0 1
1 1]*diag([xf/7,yf/14])
xset('pattern',default_color(1))
xpoly(out2(:,1)+ones(4,1)*orig(1)-1,..
out2(:,2)+ones(4,1)*(orig(2)+sz(2)-dy),"lines",1)
xfpoly(in2(:,1)+ones(4,1)*(orig(1)+sz(1))+1,..
in2(:,2)+ones(4,1)*(orig(2)+sz(2)-dy),1)
end
// set port shape
in= [-1/14 1/7
0 0
1/14 1/7
-1/14 1/7]*diag([xf,yf])
dx=sz(1)/2
xfpoly(in(:,1)+ones(4,1)*(orig(1)+dx),..
in(:,2)+ones(4,1)*(orig(2)+sz(2)),1)
endfunction
function [x,y,typ]=VR_inputs(o)
xf=60;yf=40
graphics=o.graphics
orig=graphics.orig;sz=graphics.sz;
if graphics.flip then
xo=orig(1);dx=-xf/7
else
xo=orig(1)+sz(1);dx=yf/7
end
y=orig(2)+sz(2)/2
x=(xo+dx)*ones(y)
x=[x,orig(1)+(sz(1)/2)]
y=[y,orig(2)+yf/7+sz(2)]
typ=[2 1]
endfunction