scipy.special.eval_hermitenorm#
- scipy.special.eval_hermitenorm(n, x, out=None) = <ufunc 'eval_hermitenorm'>#
- Evaluate probabilist’s (normalized) Hermite polynomial at a point. - Defined by \[He_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2};\]- \(He_n\) is a polynomial of degree \(n\). See 22.11.8 in [AS] for details. - Parameters:
- narray_like
- Degree of the polynomial 
- xarray_like
- Points at which to evaluate the Hermite polynomial 
- outndarray, optional
- Optional output array for the function values 
 
- Returns:
- Hescalar or ndarray
- Values of the Hermite polynomial 
 
 - See also - roots_hermitenorm
- roots and quadrature weights of probabilist’s Hermite polynomials 
- hermitenorm
- probabilist’s Hermite polynomial object 
- numpy.polynomial.hermite_e.HermiteE
- Probabilist’s Hermite series 
- eval_hermite
- evaluate physicist’s Hermite polynomials 
 - References [AS]- Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.