scipy.special.chdtrc#
- scipy.special.chdtrc(v, x, out=None) = <ufunc 'chdtrc'>#
- Chi square survival function. - Returns the area under the right hand tail (from x to infinity) of the Chi square probability density function with v degrees of freedom: \[\frac{1}{2^{v/2} \Gamma(v/2)} \int_x^\infty t^{v/2 - 1} e^{-t/2} dt\]- Here \(\Gamma\) is the Gamma function; see - gamma. This integral can be expressed in terms of the regularized upper incomplete gamma function- gammainccas- gammaincc(v / 2, x / 2). [1]- Parameters:
- varray_like
- Degrees of freedom. 
- xarray_like
- Lower bound of the integral. 
- outndarray, optional
- Optional output array for the function results. 
 
- Returns:
- scalar or ndarray
- Values of the survival function. 
 
 - References [1]- Chi-Square distribution, https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm - Examples - >>> import numpy as np >>> import scipy.special as sc - It can be expressed in terms of the regularized upper incomplete gamma function. - >>> v = 1 >>> x = np.arange(4) >>> sc.chdtrc(v, x) array([1. , 0.31731051, 0.15729921, 0.08326452]) >>> sc.gammaincc(v / 2, x / 2) array([1. , 0.31731051, 0.15729921, 0.08326452])