scipy.special.eval_sh_jacobi#
- scipy.special.eval_sh_jacobi(n, p, q, x, out=None) = <ufunc 'eval_sh_jacobi'>#
- Evaluate shifted Jacobi polynomial at a point. - Defined by \[G_n^{(p, q)}(x) = \binom{2n + p - 1}{n}^{-1} P_n^{(p - q, q - 1)}(2x - 1),\]- where \(P_n^{(\cdot, \cdot)}\) is the n-th Jacobi polynomial. See 22.5.2 in [AS] for details. - Parameters:
- nint
- Degree of the polynomial. If not an integer, the result is determined via the relation to - binomand- eval_jacobi.
- pfloat
- Parameter 
- qfloat
- Parameter 
- outndarray, optional
- Optional output array for the function values 
 
- Returns:
- Gscalar or ndarray
- Values of the shifted Jacobi polynomial. 
 
 - See also - roots_sh_jacobi
- roots and quadrature weights of shifted Jacobi polynomials 
- sh_jacobi
- shifted Jacobi polynomial object 
- eval_jacobi
- evaluate Jacobi polynomials 
 - References [AS]- Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.