scipy.special.eval_hermite#
- scipy.special.eval_hermite(n, x, out=None) = <ufunc 'eval_hermite'>#
- Evaluate physicist’s Hermite polynomial at a point. - Defined by \[H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2};\]- \(H_n\) is a polynomial of degree \(n\). See 22.11.7 in [AS] for details. - Parameters:
- narray_like
- Degree of the polynomial 
- xarray_like
- Points at which to evaluate the Hermite polynomial 
- outndarray, optional
- Optional output array for the function values 
 
- Returns:
- Hscalar or ndarray
- Values of the Hermite polynomial 
 
 - See also - roots_hermite
- roots and quadrature weights of physicist’s Hermite polynomials 
- hermite
- physicist’s Hermite polynomial object 
- numpy.polynomial.hermite.Hermite
- Physicist’s Hermite series 
- eval_hermitenorm
- evaluate Probabilist’s Hermite polynomials 
 - References [AS]- Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.