cumulative_trapezoid#
- scipy.integrate.cumulative_trapezoid(y, x=None, dx=1.0, axis=-1, initial=None)[source]#
- Cumulatively integrate y(x) using the composite trapezoidal rule. - Parameters:
- yarray_like
- Values to integrate. 
- xarray_like, optional
- The coordinate to integrate along. If None (default), use spacing dx between consecutive elements in y. 
- dxfloat, optional
- Spacing between elements of y. Only used if x is None. 
- axisint, optional
- Specifies the axis to cumulate. Default is -1 (last axis). 
- initialscalar, optional
- If given, insert this value at the beginning of the returned result. 0 or None are the only values accepted. Default is None, which means res has one element less than y along the axis of integration. 
 
- Returns:
- resndarray
- The result of cumulative integration of y along axis. If initial is None, the shape is such that the axis of integration has one less value than y. If initial is given, the shape is equal to that of y. 
 
 - See also - numpy.cumsum,- numpy.cumprod
- cumulative_simpson
- cumulative integration using Simpson’s 1/3 rule 
- quad
- adaptive quadrature using QUADPACK 
- fixed_quad
- fixed-order Gaussian quadrature 
- dblquad
- double integrals 
- tplquad
- triple integrals 
- romb
- integrators for sampled data 
 - Examples - >>> from scipy import integrate >>> import numpy as np >>> import matplotlib.pyplot as plt - >>> x = np.linspace(-2, 2, num=20) >>> y = x >>> y_int = integrate.cumulative_trapezoid(y, x, initial=0) >>> plt.plot(x, y_int, 'ro', x, y[0] + 0.5 * x**2, 'b-') >>> plt.show() 