scipy.special.btdtria#
- scipy.special.btdtria(p, b, x, out=None) = <ufunc 'btdtria'>#
- Inverse of - betaincwith respect to a.- This is the inverse of the beta cumulative distribution function, - betainc, considered as a function of a, returning the value of a for which betainc(a, b, x) = p, or\[p = \int_0^x \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} t^{a-1} (1-t)^{b-1}\,dt\]- Parameters:
- parray_like
- Cumulative probability, in [0, 1]. 
- barray_like
- Shape parameter (b > 0). 
- xarray_like
- The quantile, in [0, 1]. 
- outndarray, optional
- Optional output array for the function values 
 
- Returns:
- ascalar or ndarray
- The value of the shape parameter a such that betainc(a, b, x) = p. 
 
 - See also - btdtrib
- Inverse of the beta cumulative distribution function, with respect to b. 
 - Notes - Wrapper for the CDFLIB [1] Fortran routine cdfbet. - The cumulative distribution function p is computed using a routine by DiDinato and Morris [2]. Computation of a involves a search for a value that produces the desired value of p. The search relies on the monotonicity of p with a. - References [1]- Barry Brown, James Lovato, and Kathy Russell, CDFLIB: Library of Fortran Routines for Cumulative Distribution Functions, Inverses, and Other Parameters. [2]- DiDinato, A. R. and Morris, A. H., Algorithm 708: Significant Digit Computation of the Incomplete Beta Function Ratios. ACM Trans. Math. Softw. 18 (1993), 360-373.