scipy.special.
mathieu_odd_coef#
- scipy.special.mathieu_odd_coef(m, q)[source]#
- Fourier coefficients for even Mathieu and modified Mathieu functions. - The Fourier series of the odd solutions of the Mathieu differential equation are of the form \[\mathrm{se}_{2n+1}(z, q) = \sum_{k=0}^{\infty} B_{(2n+1)}^{(2k+1)} \sin (2k+1)z\]\[\mathrm{se}_{2n+2}(z, q) = \sum_{k=0}^{\infty} B_{(2n+2)}^{(2k+2)} \sin (2k+2)z\]- This function returns the coefficients \(B_{(2n+2)}^{(2k+2)}\) for even input m=2n+2, and the coefficients \(B_{(2n+1)}^{(2k+1)}\) for odd input m=2n+1. - Parameters:
- mint
- Order of Mathieu functions. Must be non-negative. 
- qfloat (>=0)
- Parameter of Mathieu functions. Must be non-negative. 
 
- Returns:
- Bkndarray
- Even or odd Fourier coefficients, corresponding to even or odd m. 
 
 - References [1]- Zhang, Shanjie and Jin, Jianming. “Computation of Special Functions”, John Wiley and Sons, 1996. https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html