scipy.special.
mathieu_even_coef#
- scipy.special.mathieu_even_coef(m, q)[source]#
- Fourier coefficients for even Mathieu and modified Mathieu functions. - The Fourier series of the even solutions of the Mathieu differential equation are of the form \[\mathrm{ce}_{2n}(z, q) = \sum_{k=0}^{\infty} A_{(2n)}^{(2k)} \cos 2kz\]\[\mathrm{ce}_{2n+1}(z, q) = \sum_{k=0}^{\infty} A_{(2n+1)}^{(2k+1)} \cos (2k+1)z\]- This function returns the coefficients \(A_{(2n)}^{(2k)}\) for even input m=2n, and the coefficients \(A_{(2n+1)}^{(2k+1)}\) for odd input m=2n+1. - Parameters:
- mint
- Order of Mathieu functions. Must be non-negative. 
- qfloat (>=0)
- Parameter of Mathieu functions. Must be non-negative. 
 
- Returns:
- Akndarray
- Even or odd Fourier coefficients, corresponding to even or odd m. 
 
 - References [1]- Zhang, Shanjie and Jin, Jianming. “Computation of Special Functions”, John Wiley and Sons, 1996. https://people.sc.fsu.edu/~jburkardt/f77_src/special_functions/special_functions.html [2]- NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/28.4#i